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Abstract  .  

Shared memory parallel computers have the reputation for being the easiest type of parallel 
computers to program. At the same time, they are frequently regarded as being the least scalable 
type of parallel computer. In particular, shared memory parallel computers are frequently 
programmed using a form of loop-level parallelism (usually based on some combination of 
compiler directives and automatic parallelization). However, in discussing this form of 
parallelism, the experts in the field routinely say that it will not scale past 4-16 processors (the 
number varies among experts). This report investigates what the true limitations are to this type 
of parallel programming. The discussions are largely based on the experiences that the authors 
had in porting the Implicit Computational Fluid Dynamics Code (F3D) to numerous shared 
memory systems from SGI, Cray, and Convex. 
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1. Introduction 

Shared memory parallel computers are generally regarded as being the easiest type of parallel 

computer to program [1]. This statement primarily applies to two types of systems, both of which 

are examples of shared memory SMPs: 

(1) Multiprocessor vector computers that in general lack caches (e.g., the Cray C90). 

(2) Multiprocessor microprocessor-based systems (either RISC or CISC) with coherent memory 

systems that include one or more layers of cache. 

Additionally, a few companies have produced systems with globally addressable memory, which 

they referred to as shared memory. The problem with this is that some of these systems are not cache 

coherent. Two of the more notable examples of this approach are the Cray T3D and the Cray T3E. 

Since the Cray T3D and T3E support the CRAFT programming model, which uses compiler 

directives to implement loop-level parallelism, the combination of the Cray T3D with the CRAFT 

model is also discussed. 

When discussing high performance computing with people in industry and the government, the 

general goal is to obtain high levels of performance. On the other hand, when one of us has 

discussed issues related to high performance computing and parallel processing with graduate 

students, professors, and researchers in academia, a second point of view has frequently surfaced. 

In that point of view, large memory uniprocessors and shared memory systems cost too much. 

Therefore, one of their main goals of using parallel processors was to avoid the performance 

Note: This work was made possible through a grant of computer time by the Department of Defense (DOD) High 
Performance Computing Modernization Program. Additionally, it was funded as part of the Common High 
Performance Computing Software Support Initiative administered by the DOD High Performance Computing 
Modernization Program. 

Note: Definitions for boldface text can be found in the Glossary. 



degradation of using out-of-core solvers at a fraction of the cost for traditional large memory 

systems. This point of view was expressed both by people involved in creating scalable libraries for 

distributed memory architectures using message-passing code and by a graduate student working in 

the field of software distributed shared memory. 

In this report, we are principally concerned with the achievement of high levels of performance. 

Based on experiences at the U.S. Army Research Laboratory (ARL) and elsewhere, it is our belief 

that the use of software distributed shared memory (as part of the parallelization strategy) with 

modern high performance processors is incompatible with the achievement of high levels of 

performance. Therefore, this form of shared memory computing is not discussed. 

Experience has shown that the performance obtained from using loop-level parallelism is highly 

dependent on a number of factors. The four main factors are: 

(1) The size and power of the computer system being used. 

(2) The quality of the design and implementation of the computer system (both hardware, 

operating system, and programming environment) being used. 

(3) The skill of the programmer who parallelizes and tunes the code, and the amount of time and 

effort this person is allowed to put into the project. 

(4) The size and configuration of the data set (e.g., bigger is better, but usually only if one has 

a small number of large zones to work with, rather than a large number of small zones to work with). 

Under optimal conditions, we have demonstrated both high levels of performance and moderate 

to high levels of speedup when using a 128-processor SGI Origin 2000. For reasons that are 

discussed later in this report, most of the other efforts/systems obtained lower levels of performance 

and/or speedup, although in many cases, the achieved level of performance was still quite useful and 

frequently cost effective. 



This report highlights the difficulties associated with producing a highly scalable shared memory 

system, since without such systems, loop-level parallelism is not scalable. However, it is important 

to remember that many of the less scalable systems are exceedingly well-designed production quality 

systems. Furthermore, while the high-end vector-based systems have limited levels of scalability 

(16-32 processors), their delivered levels of performance can easily surpass that of a 128-processor 

SGI Origin 2000. 

2. Operating System Constraints 

There are several operating system constraints that limit the usefulness of a shared memory 

system and will therefore prevent one from achieving the desired level of performance when using 

loop-level parallelism. While some of these may seem to be trivial or obvious considerations, a 

large number of current and former systems would fail to meet our performance goals simply 

because of these limitations: 

• Some systems have too limited an address range for the job's needs. This is partly based on 

the requirement to reserve a portion of the address range for each thread's private use. Furthermore, 

on many 32-bit systems, fully one-half of the address range is reserved for use solely by the kernel 

of the operating system. Finally, there has to be enough space left over to meet the job's other needs. 

In contrast, most codes implemented using MPI will not have this problem, since only a portion of 

the data needs to reside in each node's memory (remembering that with the message-passing model, 

each node executes a separate job with its own address range). 

• If the operating system either implements a master-slave policy (as opposed to being an SMP), 

or fails to support a sufficiently fine-grained set of locks within the kernel, then it may have trouble 

efficiently supporting large numbers of processors. This can be especially troublesome to shared 

memory jobs, since they tend to hit synchronization barriers much more frequently than do message- 

passing jobs written with distributed memory systems in mind. 



• The system must be run in a manner that allows a job using N processors to actually own those 

processors. Time sharing a processor is almost always counterproductive. 

• The system must provide a programming environment that supports this form of parallelism. 

In some cases, these constraints were by themselves sufficient to limit the usefulness of the early 

SMPs from SGI, SUN, and others. In fact, it wasn't until mid-1998 that the hardware and the 

operating system for the SGI Origin 2000 became sufficiently mature that 128-processor systems 

could be used in a production environment. 

3. Hardware Constraints - The Obvious Issues 

Hardware issues are a bit more complicated and are therefore considered in two separate groups. 

Some of the more obvious issues are: 

• In general, if the system does not support more than N processors, most jobs have no hope of 

seeing speedups in excess of N. 

• If the aggregate peak speed of a system does not exceed the estimated requirements to meet 

the user's needs (preferably by more than a factor of 2), the system will not be used. 

• If the delivered level of performance per processor is a small percentage of peak (e.g., 

1-2%), it is unlikely that there will be enough processors to meet the user's needs. Even if there are 

enough processors, it is difficult to see how the system will be cost effective. The net result is that 

the system is likely to be abandoned in short order (in fact, it might not even pass acceptance 

testing). 

• The system must support enough physical memory. Additionally, it must provide the 

necessary hardware support for large address spaces. 



• Only systems with a reputation for stability (or at least from a vendor with a reputation for 

building well-designed and stable supercomputers) are likely to be purchased for use as production 

systems. 

• The system must be viewed as being affordable. This metric refers to the cost per GFLOPS, 

the cost per GB of memory, the maintenance costs, and, maybe most importantly, the cost for a 

minimally configured system. This final number was the forte of vendors of mini-supercomputers 

(e.g., Convex). When comparing vector-based systems to other classes of systems, it can be very 

difficult to properly evaluate these numbers (in part, because they depend on usage policies and what 

alternative systems are available). The net result is that frequently non-vector-based systems will 

appear to be more cost effective (at least to a degree) than they really are. 

If a system fails to pass these tests, then it is unlikely to meet the user's needs. 

4. Hardware Constraints - The Subtler Points 

Some of the subtler points when it comes to the hardware are: 

• The memory system needs to have a high bandwidth, low latency, and a cost that the customer 

is willing to pay. Unfortunately, it is difficult to create high-bandwidth, low-latency memory 

systems, and such systems are always expensive. 

• A common solution to this issue is to use cache in an attempt to dramatically reduce the 

memory bandwidth requirements (e.g., by 99%). Unfortunately, this means that the code needs to 

be tuned in a manner that is cache friendly (vector-optimized code rarely starts this way, and most 

production scientific codes have been optimized for Cray vector processors). Even when the code 

has been retuned to be cache friendly (or at least one is willing and able to retune the code to be 

cache friendly), a bad cache design may make this job more difficult (or in some cases next to 



impossible). In particular, this was our experience when Cray decided to design the Cray T3D and 

Cray T3E without any external cache [2]. 

• Many early attempts to build SMPs were based on designs using either Buses or Cross Bar 

Switches. System buses have the disadvantage of not being scalable. Therefore, as one adds 

processors to the system (or alternatively increases the performance of the processors), the system 

bus will rapidly become a key bottleneck to scalability. As a result, many of these designs supported 

limited numbers of processors and/or used multiple buses to support what was at best a moderate 

level of processing power. Vector-based SMPs have traditionally used cross bar switches to provide 

much higher levels of bandwidth. These switches were then coupled with very low-latency memory 

that was arranged in multiple banks to provide exceptional levels of memory bandwidth. Finally, 

the very design principles that vector processors are based on lend themselves to tolerating a fair 

amount of memory latency. Of course, all of that added expense to these systems, but it was 

necessary if the system was to perform well without a cache (something that is frequently of little 

value to a vector processor anyway). 

• Attempts have been made to create large, scalable shared memory systems using COMA 

(KSR1) or NUMA (Convex Exemplar) architectures with long latencies and low bandwidths to the 

off-node memory. In general, these efforts have relied on some form of large DRAM-based cache 

to keep the requirement for off-node memory accesses to a minimum. Unfortunately, when working 

with 3D problems using loop-level parallelism, one is likely to find that some loops are parallelized 

in one direction, others in the second direction, and still others in the third direction. If there are 

dependencies present (as they were in key loops in the F3D code), it will be nearly impossible to 

avoid large-scale data motion (probably multiple times per time step per zone). This will make it 

difficult to show high levels of performance on these architectures. 

• In the CRAFT model for the T3D, the required solution to the problem of off-node memory 

accesses is to redistribute the data. This is equivalent to using a matrix transpose to make all of the 

data local to the nodes where they will be processed. This option can also be used on COMA and 



NUMA architectures. In fact, it is frequently used on any architecture with a memory hierarchy to 

improve the locality of reference. Unfortunately, it can be a very expensive operation to perform, 

and therefore its use is frequently minimized. While other approaches can also be used, their value 

can vary greatly from system to system. 

• Experience with the SGI Origin 2000 indicates that it is possible to create an efficient NUMA 

architecture with an acceptable memory latency and bandwidth for off-node accesses. 

• When using loop-level parallelism with 3D problems, one may encounter loops with 

dependencies in two out of the three directions. Those loops will in general exhibit limited amounts 

of parallelism (measured in the tens to the hundreds). This may be insufficient parallelism to take 

advantage of highly scalable architectures based on processors that are either weak or excessively 

inefficient. 

• Since vector processing is a form of instruction level parallelism, attempts to use large 

numbers of vector processors in conjunction with loop-level parallelism may run into performance 

problems. 

The important points here are: 

• It has proven difficult to produce a low-cost, highly scalable memory system, without which 

one cannot hope to use large numbers of processors (or at least the customer base may be too small 

to be viable). 

• If the systems require large numbers of processors and/or large vector lengths in order to 

achieve high levels of performance, then many candidates for parallelization using loop-level 

parallelism will simply lack the necessary parallelism. 



5. The Programming Environment 

There are at least four ways in which limitations in the programming environment may limit 

one's ability to demonstrate high levels of scalability when using loop-level parallelism: 

(1) Some systems do not even have any compiler support for this type of parallelism 

(alternatively, some vendors who in theory provide support for this form of parallelism have chosen 

to de-emphasize this support). 

(2) The compiler support might be so heavily based on automatic parallelization and/or on 

languages that are so rarely used at most sites that the support is of questionable value. 

(3) On some systems, the implementation of loop-level parallelism introduces additional 

constraints on the job size, thereby decreasing the value of this support and/or limiting one's ability 

to show parallel speedup. 

(4) If the normal usage of the system involves time-sharing the processors to any significant 

extent, then, at best, the observed level of parallel speedup will be highly variable, and, at worst, it 

can actually result in parallel slowdown. 

Our experience with the CRAFT programming model on the CRAY T3D illustrates the case of 

excessive limitations inherent with the programming environment itself. CRAFT was the proposed 

worksharing programming model for the distributed-memory CRAY platforms. Like other loop- 

level parallelism approaches, it promised a relatively easy avenue of porting vector codes to the new 

generation of CRAY machines—in particular, the T3D. This F77 environment consisted of: 

• CDIR$ SHARED compiler directives providing control over data distribution among the 

processing elements, 



• CDIR$ DO SHARED directives providing control over low-level parallelism, and 

• a set of subroutines and intrinsics to perform common data parallel operations such as 

reductions and scans. 

Unfortunately, along with the ease of use and maintenance came important drawbacks. The 

parallel loop dimensions were restricted to powers of 2, leading to wasted memory and complicated 

array padding. Restrictions were placed on nesting of shared loops. Most importantly, the model 

did not allow almost any control over data access patterns inside of the shared loops, and the 

compiler itself had difficulty producing efficient code inside of those loops. The model also 

promoted the use of array syntax, which further reduced reuse of the cache. With the syntax different 

from the more widely supported High Performance Fortran (HPF) standard and uncompelling 

performance, CRAFT did not gain a lot of user support and was eventually placed by CRAY in a 

maintenance mode. 

6. The F3D Code 

Before continuing on with the results that were achieved by applying loop-level parallelism to 

the F3D code, there is a brief description of the code and what was done to it. F3D is an implicit 

computational fluid dynamics code (finite difference, evolved from the Beam-Warming [3] 

linearized block implicit technique) that was originally developed by J. L. Steger for the NASA 

Ames Research Center. Subsequent modifications to the code have been made by J. Sahu of the U.S. 

Army Research Laboratory [4].* 

Originally, this code was written as an out-of-core solver (depending on the availability of a fast 

solid-state disk for good performance).  The first step in any effort to parallelize this code was 

* The original version of the code is called F3D. Since the efforts to parallelize the code resulted in large numbers of 
changes, the decision was made to rename the code. The parallelized vector version of the code is now referred to as 
F3DZONAL. The other two versions of the code contain additional extensions and are now collectively known as 
ZNSFLOW. 



therefore to turn it into an in-core solver. However, this step created a few problems. On most Cray 

vector processors and smaller RISC-based shared memory systems (e.g., the SGI Power Challenge), 

this made the code a memory hog. This was not a big problem if one had a dedicated system, but 

in most other cases, it could complicate efforts to schedule these jobs. On distributed memory 

systems with small to moderate amounts of memory per node (e.g., the Cray T3D), the problem was 

even worse. In general, the memory requirements would set a lower bound on how many processors 

could be used. This can be an important limitation for a program with a limited amount of 

parallelism. 

The original code consists of about 10,000 lines of Fortran 77, split into about 75 subroutines. 

Initially, the code was well vectorized but ran poorly on RISC-based processors and, on vector 

platforms, ran poorly with automatic compiler parallelization. The effort for the vector platforms 

consisted of additional efforts to improve the single processor performance of the code, along with 

the insertion of microtasking directives. The directives were inserted in the most time-consuming 

subroutines (about 15 of the 75). This involved declaring the variables as either shared or private 

and, in some cases, reordering the loops so as to maximize the number of parallel loops. 

Additionally, some restructuring of the code was done to improve the parallelizability of the code 

(e.g., increasing the amount of work per processor per parallelization directive). This involved 

rearranging sections of code and, in a couple of cases, moving a code fragment from one subroutine 

to another. 

The approach to parallelizing this code for RISC-based platforms was in theory quite similar. In 

practice, it was necessary to start this project with a concerted effort to improve the serial efficiency 

of the code on this new class of platforms. A number of techniques were used to dramatically reduce 

the number of cache misses that missed all the way back to the main memory and to reduce the 

Translation Lookaside Buffer (TLB). Furthermore, it was noted that since these processors are not 

vector processors, it was in most cases possible to remove optimizations aimed at improving the 

vectorizability of the code. In some cases, this allowed us to reduce the cache and TLB miss rates 

10 



(sometimes quite dramatically). In other cases, it resulted in modest reductions in the number of 

floating point operations per time step per grid point. One major benefit of the observation that the 

code no longer needed to be vectorizable was that one could now use 100% of the available 

parallelism for parallelizing the program. This observation greatly increased the level of 

performance that we could achieve on the SGI Origin 2000. Furthermore, it was critical to the 

porting of the code to the Cray T3D. 

Finally, as we have seen in the previous section, while it was expected that the version of the 

code running on the Cray T3D would use compiler directives similar to those used on the vector- 

based platforms from Cray and the RISC-based platforms from SGI and Convex, things did not work 

out that way. That one of us was able to implement loop-level parallelism using message-passing 

code on the Cray T3D and the Cray T3E demonstrates the value of loop-level parallelism. However, 

the difficulty of using this approach, and the need to use it in the first place, substantially places in 

doubt the validity of Cray Research's frequent claims that the T3D and T3E are shared memory 

systems. 

7. Results 

In addition to the work that we did with F3D, we are aware of work done with a number of other 

programs at NASA Ames Research Center and at ARL. A summary of these results are: 

• Automatic parallelizing compilers rarely show much speedup on their own. In fact, it is not 

uncommon to observe parallel slowdown when going from one to two processors [5], 

• Some jobs that make heavy use of Fortran 90 Array syntax show parallel speedup when using 

fully automatic parallelization. However, since many serial compilers produce an excessively high 

cache miss rate when compiling code written in this manner, the performance of parallel code written 

in this manner should be considered suspect. 

11 



• As indicated in section 5, attempts to use the CRAFT model with the T3D computer produced 

exceptionally poor levels of performance (3% of peak). The poor performance was seen across the 

board, from parts of F3D that necessitated complex data motion (block tridiagonal solver) to parts 

consisting of embarrassingly parallel operations (formation of residuals). A later implementation 

of the F3D on CRAY MPPs took advantage of the message-passing (still using the concept of loop- 

level parallelism) and performed at a more acceptable 20% of peak. The data motion necessary in 

the block tridiagonal solver and other sections of the code are now performed explicitly, providing 

more opportunities to store intermediate results and to aggregate sends and receives, resulting in 

much reduced communication overhead. The remaining communication-free portions of the code 

bear a strong resemblance to scalar RISC counterparts, and optimization lessons learned there can 

be applied. The message-passing version is based on the MPI standard and can also take advantage 

of the low-latency SHMEM communication library, available on CRAY MPPs and SGI SMPs. 

While the resulting code is portable across a wide range of machines (CRAY, SGI, IBM SP, and Sun 

HPC), a major effort was needed to insert explicit communication mechanisms, making this 

approach impractical in some production environments. 

• The combination of using automatic parallelization with compiler directives (e.g., C$doacross) 

will in general produce better levels of performance than when using automatic parallelization on 

its own. However, the actual levels of speedup achieved are highly dependent on the level of manual 

tuning and do not always show much benefit past 16 processors (results from runs performed on SGI 

Origin 2000s) [5,6]. 

• On a J932/16, the original code ran with a speedup of 3.19 when using 15 CPUs and automatic 

parallelization. The optimized version of the code with its microtasking directives ran 12.22 times 

faster on 15 CPUs than it did on one CPU. So the optimization effort resulted in the code running 

four times faster than the original code with automatic parallelization. 

• On a Cray T90, the optimized code ran 1,800 time steps of a 1 million grid point test case in 

12,720 s on one CPU. When using four CPUs, the same test case ran in 4,656 s (the system was not 

12 



dedicated). This is a speedup of 2.7. Presumably, larger problems would perform even better; 

however, memory constraints limit the range of problem sizes that can be run within core solvers on 

the Cray T90. 

• Attempts to use loop-level parallelism primarily/solely based on compiler directives (with 

heavy emphasis on code tuning for both serial and parallel performance) have consistently shown 

good results on SGI Origin 2000s. Depending on the choice of problem, problem size, and system 

size, at least three separate groups of researchers have reported speedups ranging from 10 to 80. 

Efforts involving systems from Convex as well as older systems from SGI usually were not as 

successful [5,7-9]. 

• James Taft of NASA Ames Research Center/MRJ Technology Solutions Inc. has developed 

a new approach for using multiple levels of loop-level parallelism combined with extra code to 

perform load balancing. He has been reporting very favorable results when using this approach on 

large SGI Origin 2000s. 

8. Conclusion 

Achieving highly scalable results when using loop-level parallelism is possible. Having said 

this, we now note that when starting a new project, one should not assume that one will 

automatically achieve highly scalable results. Achieving this goal requires a well-designed and 

implemented computer system (including the operating system and programming environment). 

Additionally, it requires a significant commitment on the part of the programmer to do it right. By 

this, we mean do the serial and parallel tuning and do not expect the compiler to do more than a 

limited amount of the work for the programmer. 

13 
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Glossary 

CFD 

CISC 

COMA 

GB 

GFLOPS 

High Level Languages 

HPF 

Low Level Languages 

MPP 

NASA 

NUMA 

RISC 

SMP 

Computational Fluid Dynamics 

Complicated Instruction Set Computer, an approach to processor design 
that assumes that the best way to get good performance out of a system 
is to provide instructions that are designed to implement key constructs 
(e.g., loops) from high level languages. 

Cache Only Memory Architecture 

Billion Bytes 

Billion floating point operations per second 

Computer languages that are designed to be relatively easy for the 
programmer to read and write. Examples of this type of language are 
Fortran, Cobol, C, etc. 

High Performance Fortran 

Computer languages that are designed to reflect the actual instruction set 
of a particular computer, hi general, the lowest level language is known 
as Machine Code. Just slightly above machine code is a family of 
languages collectively known as Assembly Code. 

Massively Parallel Processor 

National Aeronautics and Space Administration 

Non Uniform Memory Access 

Reduced Instruction Set Computer, an approach to processor design that 
argues that the best way to get good performance out of a system is to 
eliminate the Micro Code that CISC systems use to implement most of 
their instructions. Instead, all of the instructions will be directly 
implemented in hardware. This places obvious limits on the complexity 
of the instruction set, which is why the complexity had to be reduced. 

Symmetric Multiprocessor 
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